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Abstract— This letter examines modal cross power in electro-
magnetic transmission lines. It shows that the cross powers of
nearly degenerate modes may be large in quasi-TEM multicon-
ductor transmission lines typical of modern electronic circuits at
moderate and low microwave frequencies. The letter develops
simple expressions to estimate the magnitnde of these cross

powers from the “power-normalized” conductor impedance and

admittance m~atrices of the lines.

I. INTRODUCTION

T HIS LE~ER examines modal cross power in multicon-

ductor transmission lines typical of modem electronic

circuits and presents expressions useful for estimating their

importance.

The total electric field E and magnetic field If in a closed

transmission line uniform in z and constructed of linear

isotropic materials can be written as

E = ~ c$e*7”z(etn * eznz) (1)

n

and

(2)

n

+where en MC the forw~d and reverse excitation coefficients
of the nth mode, Tn is its propagation constant, and its

transverse modal electric and magnetic fields etm and htn and

its longitudinal modal electric and magnetic fields e~~ and hxn

are functions only of the transverse coordinates ~ and y [1].

Here z is the unit vector in the z direction, which coincides

with the direction of propagation, and the time harmonic

dependence e+~mt, where w is the real angular frequency, has

been suppressed. In open guides we must add a continuous

spectrum of modes to this discrete set [2].

When only a finite number of the discrete modes are excited

in the line, t]he total complex power p is

(C:,ew – c;e–7~z)*Pnm (3)

where the sum is taken over all the excited modes, Pnm =

J etn x hjm . z dS, and the integrals are performed over
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the transmission-line cross section. We will call the Pnm for

n # m the modal cross powers and will use the unitless scalars

<.m ~ PnmPmn/(PnnPmm) to quantify their significance.

Lossless modes are power orthogonal when they are not

degenerate; that is, their modal cross powers are zero (<nm =

O) when -y: # y: [1]. Most equivalent circuit theories

for multimode transmission lines begin with assumptions of

power-orthogonal modes.

When (mm is nonzero, which is only possible in Iossy

guides, the total power in the line can no longer be calculated

as a simple sum of the powers carried by each pair of forwardl

and backward modes and, in the terminology of [3], we would

say that the modes are coupled. In these cases equivalent-

circuit theories for multimode transmission lines based on

assumptions of power-orthogonal modes would not apply.

Modal symmetries eliminate the cross powers of the modes

of low-loss circular and coaxial waveguides [3]. The cross

powers of low-loss rectangular waveguide modes are gener-

ally small except at frequencies where the modes are nearly

degenerate. At these frequencies the modes couple and the

field patterns of each of the lossy coupled modes can be

represented to first order as linear combinations of the field

patterns of lossless uncoupled modal solutions, which gives

rise to large modal cross powers [3], [4]. While [3] and [4]

use perturbation theories to construct the actual modal fields

from superpositions of lossless solutions, this theory cannot

be applied to highly lossy lines typical of modern circuits.

In any case, since these near degeneracies in rectangular

waveguides are limited to narrow bands of frequencies above

the conventional upper frequency limit of the guide, they may

often be ignored in practice.

Reference [5] remarked that the cross powers of the two

dominant quasi-TEM modes of the multiconductor transmis-

sion line structure of Fig. 1 are large at useful frequencies and

illustrated the importance of accounting for them in thermal

noise calculations. Fach6 and De Zutter have constructed an

equivalent circuit theory based on power-normalized “conduc-

tor” voltages and currents that accounts rigorously for modal

cross powers even when losses are large [6]. This theory has

been clarified and extended in [7]–[9]. These works do not,

however, discuss the mechanisms and conditions that give rise

to large modal cross powers.

The high resistive losses of the small printed multiconduc-

tor transmission lines typical of modern electronic circuits

complicate their modal dispersion relations and often create

near degeneracies over broad ranges of useful frequencies. In

this work we will investigate the cross powers of the modes
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Fig. 1. The coupled microstrip transmission lines of [5].

of some typical lossy multiconductor transmission lines and

show that these near degeneracies result in large (&. We will

illustrate this with the coupled asymmetric microstrip lines of

Fig. 1 and will develop useful expressions for <nm in terms

of the “power-normalized” transmission-line impedances and

admittances per unit length of [6], which may often be

estimated from static analyzes [10].

II. QuAsI-TEM ILLUSTRATION

The coupled lines of Fig. 1 support two dominant quasi-

TEM modes, which are commonly called the e and m

modes, and which correspond to the even and the odd

mode of the symmetric case, respectively. We verified that

these modes were quasi-TEM by calculating the ratios

J le,l’ dS/J Ietlz dS and .( lh,lz dS/~ [htlzds with the

full-wave method of [11] and found that they approached zero

at low frequencies and were less than 0.001 below 10 GHz.

At high frequency, the metal losses in the coupled lines

of Fig. 1 can be neglected and the propagation constant

of the c mode, which concentrates energy in the dielectric

substrate, is substantially larger than that of the T mode (which

has significant energy in the air region above the dielectric

substrate). The higher loss of the n mode, however, forces its

propagation constant to rise more rapidly at low frequencies

than the propagation constant of the c mode, inevitably causing

-yCand Vm to become nearly degenerate at some intermediate

frequencies.

Fig. 2 plots the square root of & calculated directly from

the fields determined by the full-wave method of [11] in solid

lines, values that we verified with a method based on that

of [12]. Although <Cm is always zero due to the everdodd

symmetry of the fields when the conductor widths are equal,

& for the asymmetric case shown in the figure rises when

-y. and VT become nearly degenerate [5], an observation
consistent with similar phenomena observed in rectangular

waveguides [3], [4]. For the line of Fig. 1 with 0.5-~m-thick

conductor metal, for example, ~. and VT become close in the

frequency range 300 MHz–5 GHz, while [.7 peaks at about

1 GHz.

III. ALGEBRAIC EXPRESSIONS FOR <nm

The Pnm fix relations between the modal and the power-

normalized “circuit” voltages and currents of [6] and can

be determined from products of the matrices relating those

quantities. The unitless measure (& can be determined solely

from the matrices of power-normalized conductor impedances
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Fig. 2. The square root of <~~ for the asymmetic cowled microstrip liues
of Fig. 1. The solid lines correspond to values calculated directly from modal
electromagnetic fields determined by the full-wave method of [ 11]. The dashed
line correspond to values for t= 0.5pm calculated from (2) and estimates
of the transmission-line circuit parameters.

per unit length ~ s ~ + jw~ and admittances per unit length

x - G + jwc of the line without detailed knowledge of

how the modal and circuit quantities in the theory of [6] are

normalized. (& is found from ~ and ~ by

[b(Am)ta(An)][b(An)ta(Am)]

‘nm= [6(An)ta(An)][b(Am)ta(Am)]
(4)

where superscript “t” signifies Hermitian conjugate (conjugate

transpose), a(A~) and a(A~) are the eigenvectors of@ - Y~

with eigenvalues An = y: and Tm = y;, and b(~n) and

b(~m) are the eigenvectors of Q s z X with eigenvalues &

and & [6].

Reference [9] shows for the c and m modes of Fig. 1 that

~ is nearly zero when there are no dielectric losses, that ~ is

nearly constant with frequency, and that & rises only slightly

at the low frequencies while & increases only moderately at

the high frequencies in a fashion consistent with the effects of

field-penetration into the thin metal conductors, making them

easy to estimate. Fig. 2 shows in dashed lines & for the

metal thickness t = 0.5 ~m calculated from (4) using static

estimates of L and C from the method of [101, G = O, and
the low-frequency limit of I& which we determined from the

dc resistances of the conductors. It compares it to the direct

calculation from the modal electromagnetic fields determined

by the full-wave method of [11] (solid lines) and shows that

the estimate is accurate enough to determine when the modal
cross powers are significant. We found similar agreement for

the other metal thicknesses of Fig. 2.

When z and Y are diagonal, then (4) shows that <mm = O,

as Q = ~ are also diagonal and their eigenvectors can be taken

to be ti= columns of the identity matrix.

When z and K are symmetric, which we found to be a

very good approximation for the c and n modes of Fig. 1

and which [13] argues is true for all quasi-TEM modes, then
@ = at, where superscript “t”signifies transpose. This implies

that baa = baa = O, and we see from (4)

that <mm = O whenever the eigenvectors of B and ,6 can be

taken real.
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Since for the c and T modes of Fig. 1 Q is nearly zero and

~, ~, and & depend only weakly on frequency [9], a becomes

purely real at very high frequencies (w lLij I > Illij 1) and

purely imaginary at very low frequencies (wlL~j I < lR~j 1). ~

and ~ are positive definite, which [13] argues is always true for

quasi-TEM modes, with the consequence that the eigenvectors

of Q are also nearly real at the two frequency extremes. This

explains the tendency seen in Fig. 2 of & to approach zero

at these extremes.

If ~ = O and l?, ~, and ~ are independent of frequency,

which are reasonable approximations for the case studied here

[9], scaling & and w by a constant real factor s scales Q by

S2. This leaves the eigenvectors of Q, and thus the value of

<rim, constant and explains the shift of the maximum of <..

in Fig. 2 to lower frequencies when the conductor losses are

reduced by increasing metal thickness. It also explains why

the maximum value and shape of & does not change greatly

as the metal thickness is varied.

For two modes the eigenvalue/eigenvector problem can be

solved explicit ly in terms of the elements of Q and ~. When

~ = & then (4) becomes

(,’2 =1-
ld~l) - d~2)12

ld~l) - d~2)*12
(5)

where q(~) := (A – all)/a12 = a21/(A – a22) is the

ratio of the second to the first element of the eigenvec-

tor associated with the eigenvalue ~ = ~ (csll + a22) +

~~G?)2 + 4@ua~z. Equation (5) shows that CM is
~eal and less than or equal to one.

An equivalent form for (5) is

[A, - &y
’12 “ 1- lIm(po)12 + lRe((Al - A2)c7)12

(6)

where p = +(w1l –Q22) and o = 3CaJ~2/la121 = &la121/a12

or o = +ajl/la21 I = +la21 l/CY21. Im(po) will be small

when losses are low, so <12 may remain small even quite

near the degeneracies of low-loss modes. When Im(po) differs

significantly from zero, which will usually be the case in Iossy

structures, (6) shows that (12 will approach one as two modes

become degenerate. This shows that nearly degenerate lossy

modes will often have large cross powers and explains the

observed rise of & in Fig. 2 where TC and ~m were close.

IV. CONCLUSION

Both full-wave field calculations and static estimates show

that large mo(ird cross powers are not limited to exotic or

highly lossy structures, but occur between nearly degenerate

modes of practical planar quasi-TEM multiconductor trans-

mission lines in common use in modern electronic circuits.

The cross-power levels can be determined from the power-

normalized equivalent-circuit parameters of the transmission

line, which have a weak dependence on frequency and are

easily estimated. The results show that the modal description

can have a complicated dependence on frequency even when

the equivalent-circuit description does not and argue that

equivalent circuit theories such as those described in [6]–[9],

which rigorously account for modal cross powers, are required

to treat these common circuit elements.
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