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Modal Cross Power in Quasi-TEM
Transmission Lines

Dylan F. Williams, Senior Member, IEEE, and Frank Olyslager, Member, IEEE

Abstract— This letter examines modal cross power in electro-
magnetic transmission lines. It shows that the cross powers of
nearly degenerate modes may be large in quasi-TEM multicon-
ductor transmission lines typical of modern electronic circuits at
moderate and low microwave frequencies. The letter develops
simple expressions to estimate the magnitude of these cross
powers from the “power-normalized” conductor impedance and
admittance matrices of the lines.

1. INTRODUCTION

HIS LETTER examines modal cross power in multicon-
ductor transmission lines typical of modern electronic
circuits and presents expressions useful for estimating their
importance.
The total electric field £ and magnetic field H in a closed
- transmission line uniform in z and constructed of linear
isotropic materials can be written as

E = Z c,jfei%z(em + e.nz) €))

and
H=>" cte*(khy, + hnz) )
where ¢t are the forward and reverse excitation coefficients

n
of the nth mode, v, is its propagation constant, and its

transverse modal electric and magnetic fields e;,, and h;,, and
its longitudinal modal electric and magnetic fields e, and k.,
are functions only of the transverse coordinates x and y [1].
Here z is the unit vector in the z direction, which coincides
with the direction of propagation, and the time harmonic
dependence et4“ where w is the real angular frequency, has
been suppressed. In open guides we must add a continuous
spectrum of modes to this discrete set [2].

When only a finite number of the discrete modes are excited
in the line, the total complex power p is

p:/ExH*-zdSzZ(cﬂ{e%z—i—c;e“%z)

nm
(et et —cre ) Py A3)

where the sum is taken over all the excited modes, P, =
[ et X Ry, - 2dS, and the integrals are performed over
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the transmission-line cross section. We will call the P,,, for
n # m the modal cross powers and will use the unitless scalars
Com = Pom Prn/(Pun P ) to quantify their significance.

Lossless modes are power orthogonal when they are not
degenerate; that is, their modal cross powers are zero (Cum =
0) when 72 # ~2 [1]. Most equivalent circuit theories
for multimode transmission lines begin with assumptions of
power-orthogonal modes.

When (.., is nonzero, which is only possible in lossy
guides, the total power in the line can no longer be calculated
as a simple sum of the powers carried by each pair of forward
and backward modes and, in the terminology of [3], we would
say that the modes are coupled. In these cases equivalent-
circuit theories for multimode transmission lines based on
assumptions of power-orthogonal modes would not apply.

Modal symmetries eliminate the cross powers of the modes
of low-loss circular and coaxial waveguides [3]. The cross
powers of low-loss rectangular waveguide modes are gener-
ally small except at frequencies where the modes are nearly
degenerate. At these frequencies the modes couple and the
field patterns of each of the lossy coupled modes can be
represented to first order as linear combinations of the field
patterns of lossless uncoupled modal solutions, which gives
rise to large modal cross powers [3], [4]. While [3] and [4]
use perturbation theories to construct the actual modal fields
from superpositions of lossless solutions, this theory cannot
be applied to highly lossy lines typical of modern circuits.
In any case, since these near degeneracies in rectangular
waveguides are limited to narrow bands of frequencies above
the conventional upper frequency limit of the guide, they may
often be ignored in practice.

Reference [5] remarked that the cross powers of the two
dominant quasi-TEM modes of the multiconductor transmis-
sion line structure of Fig. 1 are large at useful frequencies and
illustrated the importance of accounting for them in thermal
noise calculations. Faché and De Zutter have constructed an
equivalent circuit theory based on power-normalized “conduc-
tor” voltages and currents that accounts rigorously for modal
cross powers even when losses are large [6]. This theory has
been clarified and extended in [7]-[9]. These works do not,
however, discuss the mechanisms and conditions that give rise
to large modal cross powers.

The high resistive losses of the small printed multiconduc-
tor transmission lines typical of modetn electronic circuits
complicate their modal dispersion relations and often create
near degeneracies over broad ranges of useful frequencies. In
this work we will investigate the cross powers of the modes
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NN Ground Plane (5 pm thickness, o = 3.602x10" Q* - m™)
Substrate (¢, = 12.9,tan 8 =0)

Fig. 1. The coupled microstrip transmission lines of [5].

of some typical lossy multiconductor transmission lines and
show that these near degeneracies resuit in large Cnm. We will
illustrate this with the coupled asymmetric microstrip lines of
Fig. 1 and will develop useful expressions for (.., in terms
of the “power-normalized” transmission-line impedances and
admittances per unit length of [6], which may often be
estimated from static analyzes [10].

IL QUASI—TEM ILLUSTRATION

The coupled lines of Fig. 1 support two dominant quasi-
"TEM modes, which are commonly called the ¢ and =
modes, and which correspond to the even and the odd
mode of the symmetric case, respectively. We verified that
these modes were quasi-TEM by calculating the ratios
[ les|2dS/ [ le:|*dS and [ |h.|*dS/ [ |he|? dS with the
full-wave method of {11] and found that they approached zero
at low frequencies and were less than 0.001 below 10 GHz.

At high frequency, the metal losses in the coupled lines
of Fig. 1 can be neglected and the propagation constant
of the ¢ mode, which concentrates energy in the dielectric
substrate, is substantially larger than that of the = mode (which
has significant energy in the air region above the dielectric
substrate). The higher loss of the 7 mode, however, forces its
propagation constant to rise more rapidly at low frequencies
“than the propagation constant of the ¢ mode, inevitably causing
~. and v, to become nearly degenerate at some intermediate
frequencies.

Fig. 2 plots the square root of (., calculated directly from
the fields determined by the full-wave method of [11] in solid
lines, values that we verified with a method based on that
of [12]. Although (., is always zero due to the even/odd
symmetry of the fields when the conductor widths are equal,
(er for the asymmetric case shown in the figure rises when
~. and <y, become nearly degenerate [5], an observation
consistent with similar phenomena observed in rectangular
waveguides [3], [4]. For the line of Fig. 1 with 0.5-um-thick
conductor metal, for example, . and v, become close in the

frequency range 300 MHz-5 GHz, while (., peaks at about

1 GHz.

III. ALGEBRAIC EXPRESSIONS FOR (pm

The P,., fix relations between the modal and the power-
normalized “circuit” voltages and currents of [6] and can
be determined from products of the matrices relating those
quantities. The unitless measure (., can be determined solely
from the matrices of power-normalized conductor impedances

Frequency (GHz)

Fig. 2. The square root of {cr for the asymmetric coupled microstrip lines
of Fig. 1. The solid lines correspond to values calculated directly from modal
electromagnetic fields determined by the full-wave method of [11]. The dashed
line correspond to values for ¢ = 0.5 ym calculated from (2) and estimates
of the transmission-line circuit parameters.

per unit length Z = R + jwL and admittances per unit length
Y = G + jwC of the line without detailed knowledge of
how the modal and circuit quantities in the theory of [6] are
normalized. (.., is found from Z and Y by

_ B a)IBA) a(A)
B0 )| I6Cm) ()]

where superscript “1” signifies Hermitian conjugate (conjugate
transpose), a(A,) and a(A.,) are the eigenvectorsof 3 =Y Z
with eigenvalues A\, = 72 and v, = 2, and b(\.) and
b(Am) are the eigenvectors of o = ZY with eigenvalues A,
and A, [6]. .

Reference [9] shows for the ¢ and = modes of Fig. 1 that
@ is nearly zero when there are no dielectric losses, that C is
nearly constant with frequency, and that L rises only slightly
at the low frequencies while R increases only moderately at
the high frequencies in a fashion consistent with the effects of
field-penetration into the thin metal conductors, making them
easy to estimate. Fig. 2 shows in dashed lines (., for the
metal thickness ¢ = 0.5 ym calculated from (4) using static
estimates of L and C from the method of [10], G = 0, and
the low-frequency limit of R, which we determined from the
dc resistances of the conductors. It compares it to the direct
calculation from the modal electromagnetic fields determined
by the full-wave method of [11] (solid lines) and shows that
the estimate is accurate enough to determine when the modal
cross powers are significant. We found similar agreement for
the other metal thicknesses of Fig. 2.

When Z and Y are diagonal, then (4) shows that (pp, = 0,
as o = [ are also diagonal and their eigenvectors can be taken
to be the columns of the identity matrix.

When Z and Y are symmetric, which we found to be a
very good approximation for the ¢ and = modes of Fig. 1
and which [13] argues is true for all quasi-TEM modes, then
B = o, where superscript “¢” signifies transpose. This implies
that b(A ) a(N,) = b(An)ta(Ay,) = 0, and we see from (4)
that (,,, = 0 whenever the eigenvectors of « and § can be
taken real. ‘ N

Cam “4)
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Since for the ¢ and 7 modes of Fig. 1 G is nearly zero and
C, L, and R depend only weakly on frequency [9], o becomes
purely real at very high frequencies (w|L;;| > |R;;|) and
purely imaginary at very low frequencies (w|L;;| < |R;;|). Z
and Y are positive definite, which [13] argues is always true for
quasi-TEM modes, with the consequence that the eigenvectors
of a are also nearly real at the two frequency extremes. This
explains the tendency seen in Fig. 2 of (., to approach zero
at these extremes.

If G = 0 and R, L, and C are independent of frequency,
which are reasonable approximations for the case studied here
[9], scaling R and w by a constant real factor s scales o by
s2. This leaves the eigenvectors of «, and thus the value of
Cnm, constant and explains the shift of the maximum of (..
in Fig. 2 to lower frequencies when the conductor losses are
reduced by increasing metal thickness. It also explains why
the maximum value and shape of .. does not change greatly
as the metal thickness is varied.

For two modes the eigenvalue/eigenvector problem can be
solved explicitly in terms of the elements of o and 8. When
B = o then (4) becomes N

_lg) = g(2)?
lg(A1) = g(A2)*|?

where g(A\) = (A — a11)/anz = a2 /(A — @) is the
ratio of the second to the first element of the eigenvec-
tor associated with the eigenvalue A = (a1 + @)
3/ (@11 — a22)? + 4az1 2. Equation (5) shows that (o is
real and less than or equal to one.

An equivalent form for (5) is

_ A1 — Aof?
Im(po)|? + [Re((A1 — A2)o)[?

G2=1 6))

Gz=1 (6)
where p = (a1 — @) and o = o, /|aaz| = £|ai2|/a12
or 0 = a3 /|ag] = £|a|/a2. Im(ps) will be small
when losses are low, so (12 may remain small even quite
near the degeneracies of low-loss modes. When Im(po) differs
significantly from zero, which will usually be the case in lossy
structures, (6) shows that (32 will approach one as two modes
become degenerate. This shows that nearly degenerate lossy
modes will often have large cross powers and explains the
observed rise of (., in Fig. 2 where . and ~y, were close.

IV. CONCLUSION

Both full-wave field calculations and static estimates show
that large modal cross powers are not limited to exotic or

highly lossy structures, but occur between nearly degenerate
modes of practical planar quasi-TEM multiconductor trans-
mission lines in common use in modern electronic circuits.
The cross-power levels can be determined from the power-
normalized equivalent-circuit parameters of the transmission
line, which have a weak dependance on frequency and are
easily estimated. The results show that the modal description
can have a complicated dependance on frequency even when
the equivalent-circuit description does not and argue that
equivalent circuit theories such as those described in [6]-[9],
which rigorously account for modal cross powers, are required
to treat these common circuit elements.
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